Moments and Growth Indices for the Nonlinear Stochastic Heat Equation with Rough Initial Conditions1 by Le Chen
نویسنده
چکیده
We study the nonlinear stochastic heat equation in the spatial domain R, driven by space–time white noise. A central special case is the parabolic Anderson model. The initial condition is taken to be a measure on R, such as the Dirac delta function, but this measure may also have noncompact support and even be nontempered (e.g., with exponentially growing tails). Existence and uniqueness of a random field solution is proved without appealing to Gronwall’s lemma, by keeping tight control over moments in the Picard iteration scheme. Upper bounds on all pth moments (p ≥ 2) are obtained as well as a lower bound on second moments. These bounds become equalities for the parabolic Anderson model when p = 2. We determine the growth indices introduced by Conus and Khoshnevisan [Probab. Theory Related Fields 152 (2012) 681–701].
منابع مشابه
Moments, Intermittency, and Growth Indices for Nonlinear Stochastic PDE's with Rough Initial Conditions
In this thesis, we study several stochastic partial differential equations (SPDE’s) in the spatial domain R, driven by multiplicative space-time white noise. We are interested in how rough and unbounded initial data affect the random field solution and the asymptotic properties of this solution. We first study the nonlinear stochastic heat equation. A central special case is the parabolic Ander...
متن کاملMoment bounds and asymptotics for the stochastic wave equation
We consider the stochastic wave equation on the real line driven by space–time white noise and with irregular initial data. We give bounds on higher moments and, for the hyperbolic Anderson model, explicit formulas for second moments. These bounds imply weak intermittency and allow us to obtain sharp bounds on growth indices for certain classes of initial conditions with unbounded support. c ⃝ ...
متن کاملOn comparison principle and strict positivity of solutions to the nonlinear stochastic fractional heat equations
In this paper, we prove a sample-path comparison principle for the nonlinear stochastic fractional heat equation on R with measure-valued initial data. We give quantitative estimates about how close to zero the solution can be. These results extend Mueller’s comparison principle on the stochastic heat equation to allow more general initial data such as the (Dirac) delta measure and measures wit...
متن کاملDecorrelation of total mass via energy∗
The main result of this small note is a quantified version of the assertion that if u and v solve two nonlinear stochastic heat equations, and if the mutual energy between the initial states of the two stochastic PDEs is small, then the total masses of the two systems are nearly uncorrelated for a very long time. One of the consequences of this fact is that a stochastic heat equation with regul...
متن کاملApplication of semi-analytic method to compute the moments for solution of logistic model
The population growth, is increase in the number of individuals in population and it depends on some random environment effects. There are several different mathematical models for population growth. These models are suitable tool to predict future population growth. One of these models is logistic model. In this paper, by using Feynman-Kac formula, the Adomian decomposition method is applied to ...
متن کامل